Studies of Heterocyclic Analogues of Azulenes. Part 9.1 Regioselective Cycloadditions of 2H-Cycloheptathiazol-2-one with Acetylenic Esters and Electron-deficient Olefins

Noritaka Abe,* Tarozaemon Nishiwaki,* and Mitsuharu Shigematsu
Department of Chemistry, Faculty of Sciences, Yamaguchi University, Yamaguchi City 753, Japan

Cycloadditions of 2 H -cycloheptathiazol-2-one with acetylenic esters and electron-deficient olefins have been found to proceed regioselectively, producing 2-oxo-3H-1-thia-2a-azacyclopent[cd]azulenes by 1,10-dipolar cyclisation, and 2-oxo-3H-1-thia-2a-azacyclopenta[ef]heptalenes.

Cycloadditions of nitrogenous heterocycles with alkynes constitute a versatile synthetic method. ${ }^{2}$ In particular, extended dipolar cycloadditions now offer a new route for heterocyclic synthesis; ${ }^{3}$ our reactions of both cyclohepta $[b]$ pyrroles and cycloheptimidazole with dialkyl acetylenedicarboxylates ${ }^{4 a}$ and electron-deficient olefins, ${ }^{4 b}$ involving a 1,8 -dipolar cyclisation, provide other examples of the usefulness of such cycloadditions for heterocyclic syntheses. Benzothiazole is known to give $1 H$-pyrido $[2,1-b]$ benzothiazole, 2,3-dihydro-1,4-benzothiazine, and 4 a H -pyrido[$2,1-b]$ benzothiazole derivatives upon reaction with dimethyl acetylenedicarboxylate (DMAD), depending on the solvent used. ${ }^{5}$ To investigate the extension of such pericyclic reactions to other aza-azulenes, and to provide a comparison with benzothiazole, we have studied the cycloaddition reactions of 2 H -cycloheptathiazol-2-one (1). ${ }^{6}$

When compound (1) and DMAD were heated under reflux in acetonitrile, dimethyl 2 -oxo- 3 H -1-thia-2a-azacyclopent[$c d$] azulene-3,4-dicarboxylate (2 a) and tetramethyl 2 -oxo- 3 H -1-thia-2a-azacyclopenta [ef]heptalene-3,4,5,6-tetracarboxylate (3a) were isolated in 49 and 16% yield, respectively; their structures were assigned on the basis of spectroscopic evidence. The ${ }^{13} \mathrm{C}$ n.m.r. spectrum (Table) of the aza-azulene (2a) has a doublet at $\delta_{\mathrm{c}} 63.8$ p.p.m., assignable to $\mathrm{C}-3$, and nine other ring-carbon signals, besides the signals attributable to $\mathrm{CO}_{2} \mathrm{Me}$ groups. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum contains a one-proton singlet $(3-\mathrm{H})$ at $\delta_{\mathrm{H}} 5.68$ and signals due to the four protons of the seven-membered ring at $\delta_{\mathrm{H}} 6.13$ (ddd, $J 12,8$, and $1 \mathrm{~Hz}, 6-\mathrm{H}$), 6.27 (dd, $J 13$ and $1 \mathrm{~Hz}, 8-\mathrm{H}$), 6.52 (ddd, $J 13,8$, and $1 \mathrm{~Hz}, 7-\mathrm{H}$), and 7.50 (dd, $J 12$ and $1 \mathrm{~Hz}, 5-\mathrm{H}$). The ${ }^{1} \mathrm{H}$ n.m.r. spectrum of the azaheptalene (3a) displays four singlets $\left(\mathrm{CO}_{2} \mathrm{Me}\right)$ at δ_{H} $3.70,3.73,3.80$, and 3.83 , a methine proton at $\delta_{H} 6.42(3-\mathrm{H})$, and a multiplet for the four protons of the seven-membered ring at δ_{H} 6.45-6.55 ($4 \mathrm{H}, \mathrm{m}$). Similarly, the reaction of compound (1) with diethyl acetylenedicarboxylate (DEAD) gave the aza-azulene (2 b) (76%) and the azaheptalene (3 b) (18%). The ${ }^{13} \mathrm{C}$ n.m.r. spectra of the aza-azulenes (2a) and (2b) are given in the Table.
The regiochemistry of the cycloaddition was confirmed from the reactions of compound (1) with electron-deficient olefins. Prolonged heating with ethyl acrylate in xylene afforded ethyl 2 -oxo-3H-1-thia-2a-azacyclopent[$c d$]azulene-4carboxylate (2c) in 30% yield. The aza-azulene (2c) showed the 3 -protons as a two-proton singlet at $\delta_{\mathrm{H}} 5.45$, the resonance being comparable with that of the 3 -protons of ethyl $3 \mathrm{H}-1,2 \mathrm{a}$ diazacyclopent $[c d]$ azulene-4-carboxylate ($\delta_{\mathrm{H}} 5.07$). ${ }^{4 \mathrm{~b}}$ and the protons of the seven-membered ring at $\delta_{\mathrm{H}} 6.25-6.8(\mathrm{~m}, 6-, 7-$, and $8-\mathrm{H}$) and 7.88 (dd, $J 12$ and $1 \mathrm{~Hz}, 5-\mathrm{H}$). The reactions with acrylonitrile, dimethyl maleate, or dimethyl fumarate similarly gave the aza-azulenes (2d) and (2a) in 2, 49, and 18% yields, respectively. All reactions with olefins were extremely sluggish, $>50 \%$ of the starting material (1) being recovered

Table ${ }^{13} \mathrm{C}$ N.m.r. chemical shifts ($\delta_{\mathrm{c}} /$ p.p.m.) and multiplicities (in parentheses) of dialkyl 2-oxo-3H-1-thia-2a-azacyclopent[cd]-azulene-3,4-dicarboxylates (2a) and (2b)

Carbon	Compound	
	(2a)	(2b)
2	167.1 (s)	166.7 (s)
3	63.8 (d)	64.1 (d)
4	112.5 (s)	112.9 (s)
4a	117.1 (s)	116.8 (s)
5	127.7 (d)	127.7 (d)
6	128.9 (d)	128.8 (d)
7	126.4 (d)	126.3 (d)
8	135.3 (d)	135.1 (d)
8 a	135.1 (s)	134.9 (s)
8 b	142.6 (s)	142.6 (s)
$\mathrm{CO}_{2} \mathrm{R}$	163.6 (s)	163.2 (s)
	166.9 (s)	166.6 (s)
OMe	51.4 (q)	
	53.2 (q)	
OCH_{2}		60.3 (t)
		62.4 (t)
Me		14.1 (q)
		14.3 (q)

in all three cases. It is clear that the cyclo-adduct with the olefin has undergone dehydrogenation during the course of the reaction or subsequent work-up.
As in our earlier studies, ${ }^{4 a}$ one would expect the aza-azulene (2) to be formed by the 1,10 -dipolar cyclisations of the species (4) and (5), and the reaction indicates that extended dipolar cycloaddition is an important and useful principle for the construction of condensed aza-azulene rings.

Experimental

M.p.s were determined in a capillary tube. ${ }^{1}$ H N.m.r. (60 MHz) and ${ }^{13} \mathrm{C}$ n.m.r. spectra were recorded on Hitachi R-24B and Varian FT-80A spectrometers, respectively; all spectra were taken for solutions in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as internal reference. Mass spectra were taken with an Hitachi M-80 spectrometer by means of the field-desorption method. U.v. spectra were measured for solutions in ethanol and i.r. spectra were determined as Nujol mulls. Petroleum L refers to the fraction of boiling range $70-120^{\circ} \mathrm{C}$ and petroleum E to the fraction of boiling range $30-60^{\circ} \mathrm{C}$. Kieselgel 60 was used for chromatography. Yields are based on starting material consumed.

Reaction of 2H-Cycloheptathiazol-2-one (1) with DMAD.A mixture of compound (1) ($0.326 \mathrm{~g}, 2 \mathrm{mmol}$) and the acetylene $(0.574 \mathrm{~g}, 4 \mathrm{mmol})$ in acetonitrile (30 ml) was heated under

(1)

(2) $\mathrm{a}: E^{1}=E^{2}=\mathrm{CO}_{2} \mathrm{Me}$
b; $E^{1}=E^{2}=\mathrm{CO}_{2} E t$
c; $E^{\prime}=\mathrm{CO}_{2} E t, E^{2}=\mathrm{H}$
d; $E^{1}=C N, E^{2}=H$

(3) $\mathrm{a} ; \mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}$
b; $E=\mathrm{CO}_{2} \mathrm{Et}$
reflux for 3 h and evaporated to dryness under reduced pressure. Chromatography of the residue with benzene as eluant gave dimethyl 2-oxo-3H-1-thia-2a-azacyclopent[cd]-azulene-3,4-dicarboxylate (2 a) ($0.126 \mathrm{~g}, 49 \%$) which crystallised as red prisms from cyclohexane-methylene dichloride and had m.p. $164-165^{\circ} \mathrm{C}$ (Found: C, 55.2; H, 3.7; N, 4.55; S, $10.3 \% ; M^{+}, 305 . \mathrm{C}_{14} \mathrm{H}_{11} \mathrm{NO}_{5} \mathrm{~S}$ requires C, $55.1 ; \mathrm{H}, 3.6 ; \mathrm{N}, 4.6$; S, $10.5 \% ; M, 305) ; \lambda_{\text {max. }} 225(\log \varepsilon 4.23), 253(4.22), 268(4.22)$, 385 (4.22), 401 (4.20), 457 (3.51), 491 (3.41), 528 (3.17), and $565 \mathrm{~nm}(2.66) ; v_{\max } 1740,1690$, and $1665 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 3.75$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), 3.82 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $5.68(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.13(1 \mathrm{H}$, ddd, $J 12,8$, and $1 \mathrm{~Hz}, 6-\mathrm{H}), 6.27(1 \mathrm{H}$, dd, $J 13$ and 1 Hz , $8-\mathrm{H}), 6.52(1 \mathrm{H}$, ddd, $J 13,8$, and $1 \mathrm{~Hz}, 7-\mathrm{H})$, and $7.50(1 \mathrm{H}$, dd, $J 12$ and $1 \mathrm{~Hz}, 5-\mathrm{H})$.

Tetramethyl 2-oxo-3H-1-thia-2a-azacyclopenta[ef]heptalene-$3,4,5,6$-tetracarboxylate (3a) ($0.059 \mathrm{~g}, 16 \%$) was eluted with benzene-chloroform ($3: 1$) and crystallised as red prisms from petroleum L -methylene dichloride, m.p. $181-182^{\circ} \mathrm{C}$ (Found: C, $53.65 ; \mathrm{H}, 3.9 ; \mathrm{N}, 3.1 ; \mathrm{S}, 6.9 \% ; M^{+}, 447 . \mathrm{C}_{20} \mathrm{H}_{17^{-}}$ $\mathrm{NO}_{9} \mathrm{~S}$ requires $\mathrm{C}, 53.7 ; \mathrm{H}, 3.8 ; \mathrm{N}, 3.1 ; \mathrm{S}, 7.2 ; M, 447$); $\lambda_{\text {max. }}$ 247 ($\log \varepsilon 4.23$), 272sh (3.95), 282sh (3.89), 334 (3.55), 353 (3.54), 373 (3.59), 393 (3.62), 420sh (3.65), 437 (3.69), 457 (3.64), 490sh (3.42), and 532sh nm (2.84); $v_{\text {max. }} 1750,1710$, and $1670 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}} 3.70(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.73(3 \mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.80$ $3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, 3.83 ($3 \mathrm{H}, \mathrm{s}, \mathrm{Me}$), $6.42(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, and $6.45-$ 6.55 (total $4 \mathrm{H}, \mathrm{m}, 7-, 8-, 9-$, and $10-\mathrm{H}$).

Elution with chloroform then gave the starting material (1) (0.189 g recovery).

Reaction of 2H-Cycloheptathiazol-2-one (1) with DEAD.A mixture of compound (1) $(0.326 \mathrm{~g}, 2 \mathrm{mmol})$ and the acetylene ($1.367 \mathrm{~g}, 4 \mathrm{mmol}$) in acetonitrile (30 ml) was heated under reflux for 3 h and worked up as described above. Elution with benzene afforded diethyl 2-oxo-3H-1-thia-2a-azacyclopent-[cd]azulene-3,4-dicarboxylate (2b) ($0.144 \mathrm{~g}, 76 \%$) which crystallised as red prisms from cyclohexane-methylene dichloride and had m.p. 137-139 ${ }^{\circ} \mathrm{C}$ (Found: C, 57.8; H, 4.7; $\mathrm{N}, 4.2 ; \mathrm{S}, 9.9 . \mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$ requires $\mathrm{C}, 57.65 ; \mathrm{H}, 4.5 ; \mathrm{N}, 4.2$; $\mathrm{S}, 9.6 \%$); $\lambda_{\text {max. }} 225(\log \varepsilon 4.20), 255(4.18), 268(4.20), 385(4.22)$, 402 (4.20), 458 (3.58), 491 (3.48), 528 (3.24), and 568 nm (2.73); $v_{\text {max. }} 1740,1705$, and $1665 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 1.29(3 \mathrm{H}, \mathrm{t}, J$ $7 \mathrm{~Hz}, \mathrm{Me})$, $1.31(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me}), 4.23(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}$, $\left.\mathrm{OCH}_{2}\right), 4.28\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 5.67(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}), 6.18$ $(1 \mathrm{H}$, ddd, $J 12,8$, and $1 \mathrm{~Hz}, 6-\mathrm{H}), 6.30(1 \mathrm{H}$, dd, $J 13$ and 1 $\mathrm{Hz}, 8-\mathrm{H}), 6.52(1 \mathrm{H}$, ddd, $J 13,8$, and $1 \mathrm{~Hz}, 7-\mathrm{H})$, and 7.50 $(1 \mathrm{H}, \mathrm{dd}, J 12$ and $1 \mathrm{~Hz}, 5-\mathrm{H})$.

Tetraethyl 2-oxo-3H-1-thia-2a-azacyclopenta[ef]heptalene-$3,4,5,6$-tetracarboxylate (3b) ($0.045 \mathrm{~g}, 18 \%$) was eluted with benzene-chloroform (2:1) and crystallised as red prisms from petroleum E, m.p. $73-77^{\circ} \mathrm{C}$ (Found: C, 57.1; H, 4.85; $\mathrm{N}, 2.9 ; \mathrm{S}, 6.5 . \mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NO}_{9} \mathrm{~S}$ requires $\mathrm{C}, 57.25 ; \mathrm{H}, 5.0 ; \mathrm{N}, 2.8$; S, 6.4\%); $\lambda_{\text {max. }} 248$ (log $\varepsilon 4.57$), 273 (4.18), 282sh (3.90), 335 (3.74), 352 (3.74), 371 (3.80), 392 (3.79), 418sh (3.67), 437 (3.76), 465 (3.75), 495 (3.57), and 530sh nm (3.09); $v_{\text {max. }} 1740$,

(4)

(5)

1725,1700 , and $1675 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 1.30(6 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, 2 \times \mathrm{Me})$, 1.33 ($3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me}$), $1.40(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me}), 4.27(2 \mathrm{H}$, $\left.\mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.33\left(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}, \mathrm{OCH}_{2}\right), 4.37(4 \mathrm{H}, \mathrm{q}$, $\left.J 7 \mathrm{~Hz}, 2 \times \mathrm{OCH}_{2}\right), 6.46(1 \mathrm{H}, \mathrm{s}, 3-\mathrm{H})$, and $6.3-6.8$ (total $4 \mathrm{H}, \mathrm{m}, 7-$ - $8-, 9-$, and $10-\mathrm{H}$).

Elution with chloroform gave the starting material (1) (0.233 g recovery).

Reaction of 2H-Cycloheptathiazol-2-one (1) with Ethyl Acrylate.-A mixture of compound (1) $(0.326 \mathrm{~g}, 2 \mathrm{mmol})$ and ethyl acrylate ($2.00 \mathrm{~g}, 20 \mathrm{mmol}$) in xylene (30 ml) was heated under reflux for 72 h and worked up as described above. Elution with benzene gave ethyl 2 -oxo-3H-1-thia-2a-azacyclo-pent[cd]azulene-4-carboxylate (2 c) ($0.048 \mathrm{~g}, 30 \%$) which crystallised as red prisms from ethanol, m.p. $134-135^{\circ} \mathrm{C}$ (Found: C, 59.8; H, 4.2; N, 5.2; S, 12.1. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{3} \mathrm{~S}$ requires C, $59.8 ; \mathrm{H}, 4.2 ; \mathrm{N}, 5.4 ; \mathrm{S}, 12.3 \%$); $\lambda_{\text {max. }} 221$ (log $\varepsilon 4.22$), 257 (4.11), 266 (4.11), 384 (4.15), 395 (4.13), 435sh (3.38), 486 (3.35), 503 (3.25), 543 (3.00), and 588 nm (2.44); $v_{\text {max }} 1685$ and $1660 \mathrm{~cm}^{-1}$; $\delta_{\mathrm{H}} 1.44(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}, \mathrm{Me}), 4.25(2 \mathrm{H}, \mathrm{q}, J$ $7 \mathrm{~Hz}, \mathrm{OCH}_{2}$), $5.45\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}\right), 6.25-6.8$ (total $3 \mathrm{H}, \mathrm{m}$, $6-$, $7-$, and $8-\mathrm{H})$, and $7.88(1 \mathrm{H}, \mathrm{dd}, J 12$ and $1 \mathrm{~Hz}, 5-\mathrm{H})$.

Elution with benzene-chloroform ($1: 1$) gave, after workup, a violet powder (not characterised) (0.112 g), m.p. >300 ${ }^{\circ} \mathrm{C}$; elution with chloroform gave the starting material (1) (0.216 g recovery).

Reaction of 2 H -Cycloheptathiazol-2-one (1) with Acrylo-nitrile.-A mixture of compound (1) $(0.815 \mathrm{~g}, 5 \mathrm{mmol})$ and acrylonitrile ($2.65 \mathrm{~g}, 50 \mathrm{mmol}$) in xylene (30 ml) was heated under reflux for 110 h and worked up as described above. Elution with benzene gave 2 -oxo- $3 \mathrm{H}-1-$ thia-2a-azacyclopent-[cd]azulene-4-carbonitrile (2d) (0.010 $\quad \mathrm{g}, \quad 2 \%) \quad$ which crystallised as red prisms from petroleum L-methylene dichloride, m.p. $>300^{\circ} \mathrm{C}$ (Found: C, 61.6; H, 2.7; N, 13.2; $\mathrm{S}, 15.1 . \mathrm{C}_{11} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{OS}$ requires $\mathrm{C}, 61.7 ; \mathrm{H}, 2.8 ; \mathrm{N}, 13.1 ; \mathrm{S}$, 15.0%); $\lambda_{\text {max }} 225(\log \varepsilon 4.01), 256(3.99), 267(3.99), 376(4.01)$, 389 (3.97), 445 (3.13), 475 (3.12), 512 (3.00), 553 (2.75), and $595(2.12) ; v_{\text {max. }} 2190$ and $1685 \mathrm{~cm}^{-1} ; \delta_{\mathrm{H}} 4.80\left(2 \mathrm{H}, \mathrm{s}, 3-\mathrm{H}_{2}\right)$ and $5.65-6.50$ (total $4 \mathrm{H}, \mathrm{m}, 5-, 6-, 7-$, and $8-\mathrm{H}$).

Elution with benzene-chloroform (1:1) afforded a violet powder (not characterised), (0.046 g), m.p. $>300{ }^{\circ} \mathrm{C}$. Finally, elution with ethyl acetate gave the starting material (1) (0.453 g recovery).

Reaction of 2H-Cycloheptathiazol-2-one (1) with Dimethyl Maleate.-A mixture of compound (1) ($0.326 \mathrm{~g}, 2 \mathrm{mmol}$) and dimethyl maleate ($2.89 \mathrm{~g}, 20 \mathrm{mmol}$) in xylene (30 ml) was heated under reflux for 72 h and worked up as described above. Elution with benzene gave the azulene (2a) ($0.134 \mathrm{~g}, 49 \%$). Elution with benzene-chloroform (1:1) afforded violet needles (not characterised) (0.075 g), m.p. $>300^{\circ} \mathrm{C}$, and chloroform eluted the starting material (1) (0.179 g recovery).

Reaction of 2H-Cycloheptathiazol-2-one (1) with Dimethyl Fumarate.-A mixture of compound (1) $(0.326 \mathrm{~g}, 2 \mathrm{mmol})$ and dimethyl fumarate ($2.89 \mathrm{~g}, 20 \mathrm{mmol}$) in xylene (50 ml) was heated under reflux for 72 h and worked up as described above.

Elution with benzene gave the azulene (2a) ($0.030 \mathrm{~g}, 18 \%$). Elution with benzene-chloroform ($1: 1$) then afforded violet crystals (not characterised) $(0.015 \mathrm{~g}), \mathrm{m} . \mathrm{p} .>300^{\circ} \mathrm{C}$, and finally, elution with chloroform gave the starting material (1) (0.235 g recovery).

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education of Japan (No. 56470021).

References

1 Part 8, N. Abe and T. Nishiwaki, Bull. Chem. Soc. Jpn., 1981, 54, 1277.

2 R. M. Acheson and N. F. Elmore, Adv. Heterocycl. Chem., 1978, 23, 263.
3 S. F. Gait, M. J. Rance, C. W. Rees, R. W. Stephenson, and R. C. Storr, J. Chem. Soc., Perkin Trans. 1, 1975, 566; J. J. Barr and R. C. Storr, ibid., 1979, 185.

4 (a) N. Abe, Y. Tanaka, and T. Nishiwaki, J. Chem. Soc., Perkin Trans. 1, 1978, 429; (b) N. Abe and T. Nishiwaki, Bull. Chem. Soc. Jpn., 1980, 53, 1773; (c) For a review see T. Nishiwaki and N. Abe, Heterocycles, 1981, 15, 547.
5 (a) H. Ogura, K. Kikuchi, H. Takayanagi, and K. Furuhata, J. Chem. Soc., Perkin Trans. 1, 1975, 2316; (b) A. McKillop, T. S. B. Sayer, and G. C. A. Bellinger, J. Org. Chem., 1976, 41, 1328; (c) P. J. Abott, R. M. Acheson, U. Eisner, D. J. Watkin, and J. R. Carruthers, J. Chem. Soc., Perkin Trans. 1, 1976, 1269.
6 T. Nozoe, S. Ito, K. Kitahara, and T. Ozeki, Tohoku Daigaku Hisuiyoeki Kagaku Kenkyusho Hokoku, 1961, 10, 251 (Chem. Abstr., 1961, 55, 25917e).

Received 6th April 1982; Paper 2/590

